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Abstract Although several clinical studies show a gender

dimorphism of immune and organ responsiveness in the

susceptibility to and morbidity from shock, trauma, and

sepsis, there are conflicting reports on the role of gender in

outcomes. In contrast, results obtained from experimental

studies clearly support the suggestion that gender plays a

significant role in post-injury pathogenesis. Studies per-

formed in a rodent model of trauma-hemorrhage have

confirmed that alterations in immune and organ functions

after trauma-hemorrhage are more markedly depressed in

adult males and in ovariectomized and aged females;

however, both are maintained in castrated males and in

proestrus females. Moreover, the survival rate of proestrus

females subjected to sepsis after trauma-hemorrhage is

significantly higher than in age-matched males or ovari-

ectomized females. In this respect, organ functions and

immune responses are depressed in males with sepsis or

trauma, whereas they are unchanged or are enhanced in

females. This article reviews studies delineating the

mechanism by which estrogen regulates cerebral nervous,

lung, and heart systems in an experimental model of sepsis,

trauma, or reperfusion injury.
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Introduction

Studies indicate that traumatic injury induces immune

dysfunction, which is associated with an increased sus-

ceptibility to sepsis, organ failure, and mortality [1–5].

Increased susceptibility to infection and a higher risk of

complications are secondary to the inhibitory effect of

trauma-hemorrhage on cell-mediated immune responses

and microbicidal activity by cells of the innate immune

system. Despite the progress made in patient management

over the last decade, sepsis and subsequent multiple organ

failure continue to be the major cause of morbidity and

mortality in injured patients. Many factors are involved in

the post-injury pathogenesis, but male gender and age are

reported to be the major risk factors for the development of

sepsis and multiple organ failure following trauma [6–11].

Several investigators are exploring the influence of gender

on the individual response to trauma, shock, and sepsis.

The significantly higher incidence of bacteremic infections

in traumatized males than in females was first reported in

1975 [8]. In 1992, increased morbidity and mortality from

sepsis in males compared to females was also reported in a

retrospective study [7]. In addition, clinical studies

observed that male gender was associated with increased

mortality in geriatric blunt trauma patients [12] and that

there was a significantly higher survival rate in women

(74 %) compared to men (31 %) following the onset of

sepsis [13]. Furthermore, male gender was identified as an

independent risk factor for the development of severe

infection in surgical patients [14]. A retrospective study

incorporating 30,286 trauma victims with an injury severity
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score (ISS) of [15 demonstrated a significantly higher

incidence of pneumonia in males [15]. Trauma patients

with an ISS of \15 displayed no differences in the inci-

dence of pneumonia. In contrast, there is a report that

female gender does not protect blunt trauma patients from

the development of adult respiratory distress syndrome,

pneumonia, or sepsis [16]. Other investigators [17–19]

have demonstrated equivalent survival rates in males and

females after traumatic injury. Moreover, some reports

[20–22] have demonstrated that female gender is a risk

factor for mortality and complication in patients with

trauma. Recent studies also showed gender dimorphism in

susceptibility to infections [23, 24] and in prognosis of

cancer [25]. These differences may be due to many factors,

including the sample size, patient triage, and variation in

patient care protocol. Patient age also plays a crucial role in

analyzing outcomes. However, studies which have inves-

tigated the effect of age and its association with gender

dimorphism following injury have also produced conflict-

ing results [11, 20, 26, 27]. Therefore, it is necessary to

perform these studies in a better controlled setting. This is

not possible in clinical studies because it is difficult to

control all of the factors that are known to influence out-

come in trauma patients. However, such controlled settings

are possible in experimental animal studies. In this regard,

experimental studies allow the well-controlled use of lab-

oratory animals and administration of drugs to determine

the role of sex hormones in post-injury pathogenesis. In

this article, we discuss the effect of estrogen on cerebral

and cardiopulmonary systems, as part of a set of papers on

the role of estrogen in sepsis, trauma, or reperfusion injury

pathogenesis in experimental animal settings.

Genomic and nongenomic effects of estrogen

A number of studies have demonstrated that estrogen

exerts beneficial effects in trauma, shock, and sepsis

[28–32]. Both endogenous and exogenous estrogens are

beneficial in those settings. Estrogen acts through the

estrogen receptors (ER) ER-a and ER-b. Furthermore, the

effects of estrogen are mediated by two different mecha-

nisms: genomic and nongenomic (membrane-initiated ste-

roid signaling, MISS; Fig. 1). The genomic effects of

estrogen require estrogen to passively diffuse into the cell

and, after binding to its receptor, estrogen acts as a tran-

scription factor by binding to specific DNA response ele-

ments. Alternatively, the estrogen–receptor complex

regulates the production of a specific protein in a more

indirect manner through transcription factor. On the other

hand, MISS effects may be mediated by classic-type ERs

residing in the cell membrane, such as ER-a and ER-b, or by

more non-classic-type receptor proteins, such as the G

protein-coupled receptor (GPR) 30. This results in the

modification of intracellular signaling pathways and kinases.

Effect of estrogen on the central nervous system (CNS)

Previous studies have shown that many inflammatory

mediators, such as inflammatory cytokines, nitric oxide

(NO), and reactive oxygen species, are involved in CNS

dysfunction in sepsis, trauma, and reperfusion injury.

Studies involving animal models of acute CNS stroke,

trauma, hemorrhage, and ischemia strongly indicate that

sex and/or hormonal status are important determinants of

outcome after these conditions.

Sepsis

Tissue homeostasis results from a balance between cell

proliferation and cell death by apoptosis. Its dysregulation

also leads to organ dysfunction. Estradiol affects prolifer-

ation as well as apoptosis in hormone-dependent tissues.

Pisera et al. [33] investigated the apoptotic response of the

anterior pituitary gland to lipopolysaccharide (LPS) in

cycling female animals, and also investigated the influence

of estradiol on this response in ovariectomized animals.

Their results indicate that estradiol induces apoptosis and

enables the proapoptotic action of LPS in the anterior

pituitary gland. They also suggested that estrogens may be

involved in anterior pituitary cell renewal during the estrus

cycle, sensitizing lactotropes to proapoptotic stimuli.

Sexual dimorphism also exists in the response of the

hypothalamic–pituitary–adrenal (HPA) axis to inflamma-

tory stress. Using an animal model of endotoxemia, Chisari

et al. [34] demonstrated that there is sexual dimorphism in

Fig. 1 Genomic and nongenomic effects of estrogen. ER estrogen

receptor, PTK protein tyrosine kinases, PI3K phosphatidylinositol

3-kinase, MAPK mitogen-activated protein kinase
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the activity of the HPA axis. They found that, whereas

estradiol plays a stimulatory role on adrenal function, tes-

tosterone inhibits adrenal glucocorticoid production. This

study further indicates a clear sexual dimorphism in mid-

dle-aged animals with endotoxemia. These results may be

relevant to the treatment of Gram-negative sepsis in aged

patients.

Trauma-hemorrhage

Akabori et al. [35] have recently demonstrated that mi-

croglial cells, resident central macrophages, play a central

role in exacerbating cell-mediated inflammation in CNS

following trauma-hemorrhage. Following trauma-hemorrhage,

plasma and hypothalamic tumor necrosis factor (TNF)-a levels

increased, along with the activation of microglial cells. Fur-

thermore, trauma-hemorrhage increased the microglial TNF-

a productive capacity in vitro. Administration of estradiol

following trauma-hemorrhage prevented these inflammatory

responses. In rats pretreated with the microglial inhibitor

minocycline, decreased microglial TNF-a production and

hypothalamic TNF-a levels were observed, but plasma TNF-a
levels were not altered following trauma-hemorrhage. Thus,

trauma-hemorrhage induces inflammatory responses even in

the hypothalamus, and estradiol appears to be a useful adjunct

for downregulating microglial cell-mediated inflammatory

response following trauma-hemorrhage.

Reperfusion injury

Hall et al. [36] demonstrated sex differences in postische-

mic neuronal necrosis in gerbils. They produced severe

incomplete hemispheric ischemia by unilateral carotid

occlusion. The males displayed significantly greater neu-

ronal necrosis compared to the females. Disruption of the

blood–brain barrier (BBB) is a critical event during cere-

bral ischemia. Liu et al. [37] found that estradiol attenuates

BBB disruption induced by cerebral ischemia–reperfusion

injury in rats. These results suggest an important role for

estrogen as the therapeutic strategy against ischemic stroke

of the CNS.

CNS injury

Previous studies have suggested that NO is produced in the

CNS following injury-induced expression of inducible

nitric oxide synthase (iNOS), and that NO from the CNS

has a harmful effect on the CNS. Estradiol as well as

progesterone administration decreased the level of iNOS

expression in vitro and improved neurological outcome.

Coughlan et al. [38] investigated the effects of progester-

one on stroke-induced expression of iNOS in mice, as well

as cytokine-induced expression of iNOS and its transcrip-

tional activators in cells relevant to injury. They observed a

significant reduction in stroke-induced iNOS transcript in

progesterone-treated mice and in cultured macrophages.

Another study demonstrated that estradiol and progesterone

decreased the level of iNOS expression in vitro and

improved neurological outcome. These observations sug-

gest the involvement of iNOS in the neuroprotective effects

of estradiol as well as progesterone.

Regarding the acute CNS injuries associated with oxi-

dative and excitotoxic stress, Regan et al. [39] showed the

protective effect of estrogen on CNS function. In that

study, they assessed the effect of estrogen in three injury

paradigms that may be relevant to CNS hemorrhage,

trauma, and ischemia. Their results suggest that estrogen

may be beneficial in acute CNS injuries associated with

oxidative and excitotoxic stress.

Lebesgue et al. [40] examined the ability of estradiol to

protect hippocampal neurons from lateral fluid percussion

brain injury. They used ovariectomized female rats and

assessed the effects of estradiol on hippocampal neurons.

In their results, estradiol did not significantly alter cell

apoptosis and the number of hippocampal neurons. In

addition, estradiol at physiological levels did not signifi-

cantly alter injury-induced loss of memory. These data

indicate that estradiol at physiological levels does not

ameliorate trauma-induced hippocampal injury or cogni-

tive deficits in ovariectomized female rats, and thus higher

doses of estrogen should be used under these conditions in

order for it to be effective.

Effect of estrogen on the respiratory system

Sepsis

Recent research has recognized that estrogen plays a crit-

ical role in improved outcomes of sepsis. Erikoglu et al.

[41] showed that estrogen administration improves con-

gestion, edema, and emphysematous and inflammatory

changes in the lung in the sepsis model of rats. Christaki

et al. [42] also demonstrated that ER-b agonist adminis-

tration provides a survival advantage in the pneumococcal

pneumonia model of sepsis.

Trauma

Severe trauma and hemorrhagic shock can lead to acute

lung injury. Caruso et al. [43] demonstrated that protection

against trauma-hemorrhage-induced lung injury was

greatest during the estrus and proestrus stages of the

menstrual cycle, and decreased with progression to dies-

trus. During the diestrus stage of the menstrual cycle (when
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gonadal hormones levels are lowest), rats were more sen-

sitive to the trauma-hemorrhage-induced lung injury,

indicating that gonadal hormones modulate trauma-

hemorrhage-induced lung injury.

Neutrophil infiltration is a key step in the development

of organ dysfunction following trauma-hemorrhage. Frink

et al. [44] showed that estradiol administration following

trauma-hemorrhage prevented neutrophil infiltration via the

modulation of keratinocyte-derived chemokines (KDC). In

addition, treatment with estradiol decreased KDC gene

expression and protein in the lung. This was accompanied

by a decrease in neutrophil infiltration and edema forma-

tion in the lung. These results suggest that estradiol pre-

vents lung neutrophil infiltration and organ damage in part

by decreasing KDC during the post-traumatic immune

response.

Hsieh et al. [45] also demonstrated that protective effects

of estradiol on lung injury following trauma-hemorrhage

are mediated via the downregulation of lung migration

inhibitory factor (MIF) and TLR4-induced cytokine/che-

mokine production. Administration of recombinant MIF

protein with estradiol abolished the estradiol-mediated

decrease in lung TLR4, lung IL-6, TNF-a, monocyte che-

moattractant protein-1, and KDC levels. Administration of

recombinant MIF protein also prevented the estradiol-

mediated reduction in neutrophil influx and tissue damage

in the lungs following trauma-hemorrhage.

Hsu et al. [46] found that extracellular signal-regulated

protein kinase (ERK) plays a role in the estradiol-mediated

attenuation of lung injury and proinflammatory mediators

after trauma-hemorrhage. Trauma-hemorrhage led to a

significant increase in lung ERK phosphorylation, which

was associated with increased lung myeloperoxidase

activity, wet-to-dry weight ratio, IL-6, TNF-a, intercellular

adhesion molecule (ICAM)-1, cytokine-induced neutrophil

chemoattractant (CINC)-1, and macrophage inflammatory

protein-2 levels. Administration of estradiol or ERK

inhibitor after trauma-hemorrhage attenuated the trauma-

hemorrhage-induced increase in lung injury markers, ERK

phosphorylation and cytokines/chemokines, and ICAM-1

production. These results collectively suggest that the sal-

utary effects of estradiol on the lung after trauma-hemor-

rhage are mediated via an ERK pathway and subsequent

downregulation of proinflammatory mediator production.

Kan et al. [47] also found that estradiol administration

after trauma-hemorrhage reduces lung injury through a

mechanism involving ER-dependent activation of the

endothelial NO synthase (eNOS)/protein kinase G (PKG)/

vasodilator-stimulated phosphoprotein (VASP) pathway.

Estradiol treatment after trauma-hemorrhage resulted in an

increase in eNOS expression/phosphorylation, PKG-I

activation, and VASP/p-VASP expression, which paral-

leled a decrease in lung injury. Inhibition of NOS abolished

the estradiol-induced increase in PKG-I activity, VASP/p-

VASP expression. Blockade of eNOS, PKG-I, and ER

exacerbated lung inflammation and injury. These results

thus suggest that activation of the eNOS-PKG/VASP

pathway by estradiol protects against trauma-hemorrhage-

induced lung injury.

Effect on pulmonary vasculature

Recent studies have demonstrated the effects of estrogen on

the pulmonary vasculature [48]. Estrogen plays a critical role

in improving outcomes in the settings of trauma, shock,

sepsis, myocardial ischemia/reperfusion, and acute lung

injury. In the pulmonary vasculature, estrogen causes vaso-

dilation and attenuates the vasoconstrictor response to vari-

ous stimuli, including hypoxia. This is mediated by increased

levels of prostacyclin and NO as well as decreased levels of

endothelin-1. In addition, effects on intracellular signaling

pathways and several kinases as well as anti-inflammatory

mechanisms may also contribute to the protective effects of

estrogen. Estrogen exerts a variety of nongenomic actions,

which may also be useful for future therapeutic interventions

in pulmonary vascular disease.

Estrogen also has an effect on pulmonary vascular

permeability. A previous study [49] showed that ioxaglate,

an ionic contrast medium, dose-dependently increased

pulmonary vascular permeability in sham-operated and

ovariectomized animals. Ovariectomized animals showed a

2.6-fold increase in aggravation of vascular permeability

by ioxaglate compared to sham-operated animals. Estradiol

valerate dose-dependently blocked ioxaglate-increased

vascular permeability in ovariectomized animals. These

findings suggest that climacterium is included, at least in

part, in the risk factors for contrast-induced adverse pul-

monary reactions, and that this risk is lowered by estrogen

treatment.

Effect of estrogen on the cardiovascular system

Sepsis

Regarding the effects of estradiol on cardiac function

during endotoxemia, some reports [50, 51] have shown the

salutary effects of this hormone on hemodynamic changes

following endotoxic shock. Zhu et al. [50] investigated the

role of Rac1 and estrogen on sex differences in cardiac

TNF-a expression during endotoxemia. Treatment of male

mice with estradiol attenuated myocardial dysfunction

during endotoxemia. LPS induces Rac1 activation, which

contributes to NADPH oxidase activity and phosphoryla-

tion of ERK1/2/p38 MAPK, leading to TNF-a expression

in the heart. The sex difference in TNF-a expression is
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estrogen dependent and mediated via Rac1-dependent

NADPH oxidase/ERK1/2 and the p38 MAPK pathway in

LPS-stimulated hearts. Palacios et al. [51] investigated the

effects of post-treatment with a synthetic estrogen, ethinyl

estradiol, on the hemodynamics of animals challenged with

LPS. Post-treatment with ethinyl estradiol attenuated

hemodynamic changes in endotoxic shock.

Trauma-hemorrhage

Gender differences also exist in the cardiovascular system.

Following trauma-hemorrhage, cardiac output, stroke vol-

ume, and cardiac contractility (?dP/dt) decreased signifi-

cantly. Trauma-hemorrhage also leads to diminished

cardiac performance in male animals [52, 53]. Treatment of

male animals with the androgen receptor antagonist flu-

tamide improved cardiovascular functions following

trauma-hemorrhage [54]. Alternatively, castration of male

animals two weeks prior to trauma-hemorrhage also pre-

vented depression of myocardial function following

trauma-hemorrhage [55]. Furthermore, Kuebler et al. [56]

demonstrated differences in the regulation of plasma and

tissue volumes between males and proestrus females fol-

lowing trauma-hemorrhage. They found that circulating

blood volume increased in proestrus females during and

after trauma-hemorrhage compared to males, which might

contribute to the improved organ functions in proestrus

females under those conditions.

Mizushima et al. [57] demonstrated that female sex

steroids have salutary effects on depressed cardiovascular

functions following trauma-hemorrhage in male animals.

Left ventricular performance, cardiac output, and hepato-

cellular function decreased significantly at 24 h after

trauma-hemorrhage and resuscitation in male rats. They

also showed that administration of estradiol in males fol-

lowing trauma-hemorrhage significantly improved cardiac

performance and cardiac output. Since then, many studies

have examined the effects of estradiol on cardiomyocyte

inflammatory mediator expression following trauma-hem-

orrhage. Nickel et al. [58] demonstrated that estrogen

decreased the elevated HIF-1a, NF-jB, and IL-6 levels

after trauma-hemorrhage in cardiomyocytes. Yang et al.

[59] also demonstrated that there is an inverse correlation

between cardiomyocyte IL-6 levels and cardiac function

after trauma-hemorrhage. Estradiol administration follow-

ing trauma-hemorrhage attenuated cardiomyocyte IL-6

gene expression. The salutary effects of estradiol on car-

diac function after trauma-hemorrhage may be due in part

to decreased HIF-1a expression and IL-6 synthesis in

cardiomyocytes.

Additional studies have shown that estradiol influences

the expression of heat shock protein (HSP) after trauma-

hemorrhage. Szalay et al. [60] found that estradiol

administration following trauma-hemorrhage and resusci-

tation increased heart HSP expression and improved cardiac

function. Other investigators also demonstrated that the

salutary effects of estradiol on cardiac function were med-

iated via upregulation of HSP expression [61, 62]. Szalay

et al. [63] also demonstrated that estradiol treatment

induced increased heme oxygenase (HO)-1 mRNA

expression, HO-1 protein levels, and HO enzyme activity in

cardiac tissue. Thus, the salutary effects of estradiol

administration on cardiac function after trauma-hemorrhage

are also mediated in part via upregulation of HO-1

expression and activity.

A large number of studies have investigated the effect of

estradiol on intracellular signaling pathways in cardio-

myocytes following trauma-hemorrhage. p38 mitogen-

activated protein kinase (MAPK) activates a number of

HSPs, including HSP27 and ab-crystallin, in response to

stress. Activation of HSP27 or ab-crystallin is known to

protect organs/cells by increasing the stability of actin

microfilaments. Hsu et al. [61] showed that cardiac func-

tions were depressed after trauma-hemorrhage, but those

functions were normalized by estradiol administration.

Phosphorylation of cardiac p38 MAPK, HSP27, and ab-

crystallin was also increased by estradiol administration.

These results suggest that the salutary effects of estradiol

on cardiac function after trauma-hemorrhage are mediated

in part via upregulation of p38 MAPK and subsequent

phosphorylation of HSP27 and ab-crystallin. Kan et al.

[64] further showed that the salutary effects of estradiol on

cardiac functions following trauma-hemorrhage are medi-

ated through the activation of p38 MAPK and subsequent

eNOS expression and phosphorylation. They also showed

that the administration of estradiol following trauma-

hemorrhage restored cardiac Akt phosphorylation [65, 66]

and further increased HO-1 expression [65]. These results

suggest that the estradiol-meditated improvement in car-

diac function following trauma-hemorrhage occurs via

Akt-dependent HO-1 upregulation. In addition, Liu et al.

[67] demonstrated that estradiol has cardioprotective

effects through Akt phosphorylation. In cardiomyocytes,

estradiol inhibits their apoptosis and TNF-a production via

activation of Akt. Yu et al. [68] also showed that the PI3K/

Akt pathway plays a critical role in mediating the salutary

effects of estradiol on cardiac function and cardiomyocyte

apoptosis following trauma-hemorrhage. Regarding the

effect of estradiol on apoptosis, Strehlow et al. [69] showed

estradiol’s anti-apoptotic effect on bone marrow-derived

endothelial progenitor cells.

Estradiol treatment following trauma-hemorrhage attenu-

ates the depression in cardiac mitochondrial functions. PGC-

1a [peroxisome proliferator-activated receptor (PPARc)

coactivator-1a], a key regulator of cardiac mitochondrial ATP

production, activates PPARc and mitochondrial transcription
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factor A (Tfam), which regulate proteins, fatty acid and ATP

metabolism [i.e., FAT/CD36, MCAD, and cytochrome-c

oxidase subunit (COX) I]. PGC-1 also induces mitochondrial

genes by activating transcription factors such as nuclear

respiratory factor 2 (NRF-2), which regulates mitochondrial

proteins (i.e., Tfam, COX IV, and b-ATP synthase). Hsieh

et al. [70, 71] demonstrated that estradiol treatments attenu-

ated the decrease in cardiac mitochondrial ATP, abrogated the

trauma-hemorrhage-induced lipid accumulation, and nor-

malized PGC-1a, PPARc, FAT/CD36, MCAD, Tfam, NRF-2,

and COX I and IV after trauma-hemorrhage. Estradiol

mediates its effects via ER-mediated upregulation of PGC-1.

Estradiol is known to regulate mitochondrial DNA (mtDNA)-

encoded genes, including mitochondrial respiratory complex

(MRC) proteins. Depressed MRC activity has been reported to

promote the release of cytochrome c from mitochondria and

induce apoptosis. Estradiol treatment after trauma-hemor-

rhage normalizes MRC-IV gene expression and inhibits

mitochondrial apoptotic signaling pathways [72].

Reperfusion injury

Ischemia/reperfusion (I/R) also lead to cardiac dysfunction

[73]. It is recognized that myocardial inflammation plays a

crucial role in I/R-induced myocardial dysfunction. There

are many important reports on this topic from Daniel

Meldrum’s group [10, 73–78]. Inflammatory mediators

such as TNF-a, IL-1b, and IL-6 are produced by cardio-

myocytes and contribute to myocardial functional depres-

sion and apoptosis. The inflammatory response, including

the p38 MAPK signaling cascade and the expression of

proinflammatory cytokines such as TNF-a and IL-1b, may

precipitate cardiomyocyte apoptosis following I/R injury.

Apoptosis may be an essential component of the patho-

genesis of heart failure, and there is evidence that myocyte

apoptosis in the failing human heart is markedly lower in

women than in men [73]. Sex hormones are important

modifiers of the acute inflammatory response to injury, and

female sex steroids such as estradiol have a protective

effect on I/R injury [10, 73–78]. Kuhar et al. [79] dem-

onstrated that estradiol improved coronary flow and

decreased arrhythmias after I/R. Furthermore, Chandrase-

kar et al. [80] showed that locally delivered estradiol sig-

nificantly enhanced re-endothelialization and endothelial

function after percutaneous transluminal coronary angio-

plasty (PTCA), possibly by improving the expression of

eNOS. Since endothelial dysfunction can promote both

restenosis and coronary spasm, they concluded that local

estradiol administration may be a promising new approach

for improving long-term results after PTCA.

Conclusions

A major consequence of sepsis, trauma, and reperfusion

injury is the suppression of organ and immune cell func-

tions. The findings reviewed in this article suggest that the

tissue response to these stresses is gender dimorphic, and

that sex steroids play a decisive role in the depression or

maintenance of organ functions following injury. High

circulating estrogen levels due to endogenous or exogenous

administration have protective effects. In this review, we

describe the protective effects of estrogen on CNS, lung,

and heart (Table 1). The protective effects of estrogen in

restoring organ function occur via a genomic effect medi-

ated through intracellular receptors, ER-a and ER-b.

Experimental studies clearly demonstrate that estrogen and

ER agonists are useful therapeutic adjuncts for protecting

organ functions and improving outcome following sepsis,

trauma, and reperfusion injury.
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